Integrasi GEE dan Citra Optik Sentinel untuk Pemetaan Tutupan dan Penggunaan lahan di Jawa Timur

  • Chairiyah Umi Rahayu Universitas Jember
  • Marga Mandala Universitas Jember
  • Farid Lukman Hakim Universitas Jember
  • Nova Nevila Rodhi Universitas Bojonegoro
  • Ahkmad Andi Saputra Universitas Gresik
Keywords: tata guna lahan, tutupan lahan, Jawa Timur, Google Eatth Engine, Random Forest

Abstract

Informasi Tata Guna Lahan dan Tutupan Lahan (LULC) sangat penting untuk pemantauan lanskap dan pengembangan kebijakan pengelolaan lahan yang efektif. Penelitian ini bertujuan untuk memetakan LULC di Provinsi Jawa Timur. Dalam hal ini, citra Optik (sentinel 2) dikumpulkan dan diproses menggunakan Google Eatth Engine (GEE) untuk menghasilkan peta LULC terkini. Penggunaan citra diambil antara tahun 2020 hingga 2022. Algoritma Random Forest digunakan untuk mengklasifikasikan piksel untuk membentuk kelas LULC. Dalam studi ini, delapan kelas LULC signifikan dikategorikan, yaitu, area terbangun (BU), lahan pertanian heterogen (HAL), lahan kosong (BS), sawah (PF), badan air (OW), vegetasi (VG ), semak belukar (SH), dan lahan basah (WL). Selanjutnya, sampel pelatihan diinterpretasikan dari Google Earth Pro, peta dasar satelit GEE, dan titik kendali tanah (GCP) yang dikumpulkan. GCP yang dikumpulkan dibagi menjadi 70% data pelatihan dan 30% data validasi. Hasilnya peta LULC mencakup seluruh wilayah provinsi Jawa Timur. Seluruh wilayah provinsi terdiri dari lahan terbangun (BU = 6,65 %), lahan pertanian heterogen (HAL = 7,99%), lahan kosong (BS = 1,92%), sawah (PF=46,11 %), perairan terbuka (OW=0.21%), vegetasi (VG= 23.56%), semak belukar (SH= 12.17%), dan badan air (WL= 1.39%). Studi menunjukkan bahwa kombinasi citra optik dan GEE menghasilkan peta tematik yang baik yang menggambarkan kelayakan kelas LULC di Jawa Timur.

References

Aksoy H, Kaptan S. 2020. Simulation of future forest and land use/cover changes (2019–2039) using the cellular automata-Markov model. Geocarto Int. 6049. https://doi.org/10.1080/10106049.2020.1778102

BPS-Statistics Indonesia. 2021. Luas Panen, Produksi, dan Produktivitas Padi Menurut Provinsi 2019-2021 [Harvested Area, Production, and Productivity of Paddy Based on Province 2019-2021] [Internet]. Jakarta (ID): BPS-Statistics Indonesia; [accessed 2022 Jan 2]. https://www.bps.go.id/indicator/53/1498/1/luas-panen-produksi-dan-produktivitas-padi-menurut-provinsi.html

BPS-Statistics Indonesia. 2019. Luas Kawasan Hutan Menurut Kabupaten Kota Di Provinsi Jawa Timur 2017. Surabaya (ID): BPS-Statistics of Jawa Timur Province. https://jatim.bps.go.id/statictable/2019/04/23/1431/luas-kawasan-hutan-menurut-kabupaten-kota-di-provinsi-jawa-timur-hektar-2017.html

BPS-Statistics of Jawa Timur Province. 2021. Provinsi Jawa Timur dalam Angka 2021 [Jawa Timur Province in Figures 2021]. Surabaya (ID): BPS-Statistics of Jawa Timur Province.

BPS-Statistics of Jember Regency. 2021. Kabupaten Jember dalam Angka 2021 [Jember Regency in Figures 2021]. Jember (ID): BPS-Statistics of Jember Regency.

Breiman L. 2001. Random Forests. Mach Learn. 45(1):5–32. https://doi.org/10.1023/A:1010933404324

Camargo FF, Sano EE, Almeida CM, Mura JC, Almeida T. 2019. A comparative assessment of machine-learning techniques for land use and land cover classification of the Brazilian tropical savanna using ALOS-2/PALSAR-2 polarimetric images. Remote Sens. 11(13). https://doi.org/10.3390/rs11131600

East Java Governor's Decree. 2020. Keputusan Gubernur Jawa Timur Nomor 188/538/KPTS/013/2020 Tentang Upah Minimum Kabupaten/Kota di Jawa Timur Tahun 2021 [East Java Governor’s Decree Number 177/538/KPTS/013/2020 About Minimum Wages of Municipality/Regency in East Java Province]. Surabaya (ID).

Floreano IX, de Moraes LAF. 2021. Land use/land cover (LULC) analysis (2009–2019) with Google Earth Engine and 2030 prediction using Markov-CA in the Rondônia State, Brazil. Environ Monit Assess. 193(4):1–17. https://doi.org/10.1007/s10661-021-09016-y

Fonji SF, Taff GN. 2014. Using satellite data to monitor land-use land-cover change in North-eastern Latvia. Springerplus. 3(1):61. https://doi.org/10.1186/2193-1801-3-61

Gashu K, Gebre-Egziabher T. 2018. Spatiotemporal trends of urban land use/land cover and green infrastructure change in two Ethiopian cities: Bahir Dar and Hawassa. Environ Syst Res. 7(1). https://doi.org/10.1186/s40068-018-0111-3

Gislason PO, Benediktsson JA, Sveinsson JR. 2006. Random forests for land cover classification. Pattern Recognit Lett. 27(4):294–300. https://doi.org/10.1016/j.patrec.2005.08.011

Global Volcanism Program. 2013. Semeru (263300) in Volcanoes of the World. Smithson Inst [Internet]. [accessed 2022 May 7] v.4.10.6. https://doi.org/https://doi.org/10.5479/si.GVP.VOTW4-2013

Goodin DG, Anibas KL, Bezymennyi M. 2015. Mapping land cover and land use from object-based classification: an example from a complex agricultural landscape. Int J Remote Sens. 36(18):4702–4723. https://doi.org/10.1080/01431161.2015.1088674

Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens Environ. 202:18–27. https://doi.org/10.1016/j.rse.2017.06.031

Hassan Z, Shabbir R, Ahmad SS, Malik AH, Aziz N, Butt A, Erum S. 2016. Dynamics of land use and land cover change (LULCC) using geospatial techniques: a case study of Islamabad Pakistan. Springerplus. 5(1). https://doi.org/10.1186/s40064-016-2414-z

Hu Y, Batunacun, Zhen L, Zhuang D. 2019. Assessment of Land-Use and Land-Cover Change in Guangxi, China. Sci Rep. 9(1):1–13. https://doi.org/10.1038/s41598-019-38487-w

van Leeuwen B, Tobak Z, Kovács F. 2020. Machine Learning Techniques for Land Use/Land Cover Classification of Medium Resolution Optical Satellite Imagery Focusing on Temporary Inundated Areas. J Environ Geogr. 13(1–2):43–52. https://doi.org/10.2478/jengeo-2020-0005

Lin L, Hao Z, Post CJ, Mikhailova EA, Yu K, Yang L, Liu J. 2020. Monitoring land cover change on a rapidly urbanizing island using google earth engine. Appl Sci. 10(20):1–16. https://doi.org/10.3390/app10207336

Mohajane M, Essahlaoui A, Oudija F, Hafyani M El, Hmaidi A El, Ouali A El, Randazzo G, Teodoro AC. 2018. Land use/land cover (LULC) using landsat data series (MSS, TM, ETM+ and OLI) in azrou forest, in the central middle atlas of Morocco. Environ - MDPI. 5(12):1–16. https://doi.org/10.3390/environments5120131

NASA JPL. 2013. NASA Shuttle Radar Topography Mission Global 1 arc second [Data set]. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003

Parece, T. E., & Campbell, J. B. (2015). Land use/land cover monitoring and geospatial technologies: An overview. Handbook of Environmental Chemistry (Vol. 33, pp. 1–32). Springer Verlag. DOI: https://doi. org/10.1007/978-3-319-14212-8_1

Pan X, Wang Z, Gao Y, Dang X, Han Y. 2021. Detailed and automated classification of land use/land cover using machine learning algorithms in Google Earth Engine. Geocarto Int. 0(0):1–18. https://doi.org/10.1080/10106049.2021.1917005

Pelletier C, Valero S, Inglada J, Champion N, Dedieu G. 2016. Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sens Environ. 187:156–168. https://doi.org/10.1016/j.rse.2016.10.010

Sentinel 2 PDGS Project Team. 2014. Sentinel-2 Calibration and Validation Plan for the Operational Phase Bianca Hoersch. Frascati: ESA Centre for Earth Observation.

Shih H chien, Stow DA, Chang KC, Roberts DA, Goulias KG. 2021. From land cover to land use: Applying random forest classifier to Landsat imagery for urban land-use change mapping. Geocarto Int. 0(0):1–24. https://doi.org/10.1080/10106049.2021.1923827

Singh SK, Laari PB, Mustak S, Srivastava PK, Szabó S. 2018. Modelling of land use land cover change using earth observation datasets of Tons River Basin, Madhya Pradesh, India. Geocarto Int. 33(11):1202–1222. https://doi.org/10.1080/10106049.2017.1343390

Susilohadi. 1995. Late tertiary and quaternary geologi of the East Java Basin, Indonesia [Doctor of Philosophy thesis]. Wollongong (AU): University of Wollongong.

Tassi A, Vizzari M. 2020. Object-Oriented LULC Classification in Google Earth Learning Algorithms. Remote Sens. 12:1–17. https://doi.org/doi.org/10.3390/rs12223776

Tian S, Zhang X, Tian J, Sun Q. 2016. Random forest classification of wetland landcovers from multi-sensor data in the arid region of Xinjiang, China. Remote Sens. 8(11):1–14. https://doi.org/10.3390/rs8110954

Zurqani HA, Post CJ, Mikhailova EA, Schlautman MA, Sharp JL. 2018. Geospatial analysis of land use change in the Savannah River Basin using Google Earth Engine. Int J Appl Earth Obs Geoinf. 69(September 2017):175–185. https://doi.org/10.1016/j.jag.2017.12.006

Published
2023-10-31