Pemetaan Jenis Tanaman Menggunakan Pendekatan Machine-Learning dan Citra Sentinel-2: Studi Kasus di Lumajang, Jawa Timur, Indonesia

  • Mahrus Irsyam Universitas Jember
  • Wheny Khirstianto Universitas Jember
  • Nurud Diniyah Universitas Jember
Keywords: Pemetaan jenis tanaman, Sentinel 2, Ranfom Forest, Lumajang

Abstract

Jenis tanaman menunjukkan intensitas penggunaan lahan untuk berbagai jenis tanaman pada suatu areal. Pemetaan jenis tanaman (crop type mapping) bertujuan untuk mengembangkan strategi di masa depan, sehingga system pertanian dapat berkelanjutan. Secara prinsip, berbagai jenis citra satelit dapat digunakan untuk memetakan vairiabitas jenis tanaman (crop type) yang ada pada suatu areal lahan. Pada penelitian ini data Sentinel-2 digunakan sebagai input utama untuk memetakan jenis tanaman. Penelitian dilakukan di wilayah kecamatan Pasrujambe dan Candipuro (± seluas 242,23 km2) di Kabupaten Lumajang. Penelitian ini menggunakan data Sentinel-2 dari tanggal 25 Juni hingga 6 Juli 2023 dengan tutupan awan minimal 10%. Selanjutnya, Data citra diproses menggunakan algoritma machine learning yang ada di platform GEE. Pada kasus ini, digunakan Algoritma random forest.  Akurasi dihasilkan dengan menggunakan matriks konfusi dengan akurasi keseluruhan sebesar 85,82% dan nilai kappa sebesar 71,19%. Pemetaan menghasilkan 5 jenis penggunaan/tutupan lahan utama, berupa: paddy (17.31%), tebu (0.93%), vegetasi lain (69.74%), pasir (7.4%) dan lahan terbangun (4.59%). Secara umum, citra sentinel 2 dapat diguanakan untuk pemetaan jenis tanaman. Variabitas tutupan lahan yang sangat tinggi dan ukuran petak sawah yang kecil menjadi kendala dalam proses klasifikasi tanaman yang lebih detail.

References

Agency, E. S. (2015). SENTINEL-2 User Handbook Sentinel-2 User Handbook SENTINEL-2 User Handbook. 1, 1–64.

Akbari, E., Boloorani, A. D., Samany, N. N., Hamzeh, S., Soufizadeh, S., & Pignatti, S. (2020). Crop Mapping Using Random and Particle Swarm Optimization based on Multi-Temporal Sentinel-2. Remote Sensing, 12(9), 1–21. https://doi.org/10.3390/rs12091449

Alami Machichi, M., mansouri, loubna El, imani, yasmina, Bourja, O., Lahlou, O., Zennayi, Y., Bourzeix, F., Hanadé Houmma, I., & Hadria, R. (2023). Crop mapping using supervised machine learning and deep learning: a systematic literature review. International Journal of Remote Sensing, 44(8), 2717–2753. https://doi.org/10.1080/01431161.2023.2205984

Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., & Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 269(January), 112831. https://doi.org/10.1016/j.rse.2021.112831

Erdanaev, E., Kappas, M., & Wyss, D. (2022a). Irrigated Crop Types Mapping in Tashkent Province of Uzbekistan with Remote Sensing-Based Classification Methods. Sensors. https://doi.org/10.3390/s22155683

Erdanaev, E., Kappas, M., & Wyss, D. (2022b). The Identification of Irrigated Crop Types Using Support Vector Machine, Random Forest and Maximum Likelihood Classification Methods with Sentinel-2 Data in 2018: Tashkent Province, Uzbekistan. International Journal of Geoinformatics. https://doi.org/10.52939/ijg.v18i2.2151

Feng, S., Zhao, J., Liu, T., Zhang, H., Zhang, Z., & Guo, X. (2019). Crop Type Identification and Mapping Using Machine Learning Algorithms and Sentinel-2 Time Series Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. https://doi.org/10.1109/JSTARS.2019.2922469

Griffiths, P., Nendel, C., & Hostert, P. (2019). Intra-annual reflectance composites from Sentinel-2 and Landsat for national-scale crop and land cover mapping. Remote Sensing of Environment. https://doi.org/10.1016/j.rse.2018.10.031

Gumma, M. K., Tummala, K., Dixit, S., Collivignarelli, F., Holecz, F., Kolli, R. N., & Whitbread, A. M. (2022). Crop type identification and spatial mapping using Sentinel-2 satellite data with focus on field-level information. Geocarto International. https://doi.org/10.1080/10106049.2020.1805029

HAO, P. yu, TANG, H. jun, CHEN, Z. xin, MENG, Q. yan, & KANG, Y. peng. (2020). Early-season crop type mapping using 30-m reference time series. Journal of Integrative Agriculture. https://doi.org/10.1016/S2095-3119(19)62812-1

Hegarty-Craver, M., Polly, J., O’Neil, M., Ujeneza, N., Rineer, J., Beach, R. H., Lapidus, D., & Temple, D. S. (2020). Remote crop mapping at scale: Using satellite imagery and UAV-acquired data as ground truth. Remote Sensing. https://doi.org/10.3390/rs12121984

Huete, A. R., Hua, G., Qi, J., Chehbouni, A., & van Leeuwen, W. J. D. (1992). Normalization of multidirectional red and NIR reflectances with the SAVI. Remote Sensing of Environment. https://doi.org/10.1016/0034-4257(92)90074-T

Kpienbaareh, D., Sun, X., Wang, J., Luginaah, I., Bezner Kerr, R., Lupafya, E., & Dakishoni, L. (2021). Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data. Remote Sensing, 13(4), 700. https://doi.org/10.3390/rs13040700

Liu, L., Xiao, X., Qin, Y., Wang, J., Xu, X., Hu, Y., & Qiao, Z. (2020). Mapping cropping intensity in China using time series Landsat and Sentinel-2 images and Google Earth Engine. Remote Sensing of Environment, 239, 111624. https://doi.org/10.1016/j.rse.2019.111624

Llano, X. C. (2019). AcATaMa - QGIS plugin for Accuracy Assessment of Thematic Maps. https://plugins.qgis.org/plugins/AcATaMa/

Luo, K., Lu, L., Xie, Y., Chen, F., Yin, F., & Li, Q. (2023). Crop type mapping in the central part of the North China Plain using Sentinel-2 time series and machine learning. Computers and Electronics in Agriculture, 205, 107577. https://doi.org/https://doi.org/10.1016/j.compag.2022.107577

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. International Journal of Remote Sensing. https://doi.org/10.1080/01431169608948714

Nguyen, C. T., Chidthaisong, A., Kieu Diem, P., & Huo, L.-Z. (2021). A Modified Bare Soil Index to Identify Bare Land Features during Agricultural Fallow-Period in Southeast Asia Using Landsat 8. In Land (Vol. 10, Issue 3). https://doi.org/10.3390/land10030231

Nouri, H., Anderson, S., Sutton, P., Beecham, S., Nagler, P., Jarchow, C. J., & Roberts, D. A. (2017). NDVI, scale invariance and the modifiable areal unit problem: An assessment of vegetation in the Adelaide Parklands. Science of The Total Environment, 584–585, 11–18. https://doi.org/https://doi.org/10.1016/j.scitotenv.2017.01.130

Prins, A. J., & Van Niekerk, A. (2021). Crop type mapping using LiDAR, Sentinel-2 and aerial imagery with machine learning algorithms. Geo-Spatial Information Science, 24(2), 215–227. https://doi.org/10.1080/10095020.2020.1782776

Salas, E. A. L., Subburayalu, S. K., Slater, B., Zhao, K., Bhattacharya, B., Tripathy, R., Das, A., Nigam, R., Dave, R., & Parekh, P. (2020). Mapping crop types in fragmented arable landscapes using AVIRIS-NG imagery and limited field data. International Journal of Image and Data Fusion. https://doi.org/10.1080/19479832.2019.1706646

Shaharum, N. S. N., Shafri, H. Z. M., Ghani, W. A. W. A. K., Samsatli, S., Al-Habshi, M. M. A., & Yusuf, B. (2020). Oil palm mapping over Peninsular Malaysia using Google Earth Engine and machine learning algorithms. Remote Sensing Applications: Society and Environment. https://doi.org/10.1016/j.rsase.2020.100287

Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring Google earth engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Frontiers in Earth Science, 5, 1–10. https://doi.org/10.3389/feart.2017.00017

Sun, L., Chen, J., Guo, S., Deng, X., & Han, Y. (2020). Integration of time series sentinel-1 and sentinel-2 imagery for crop type mapping over oasis agricultural areas. Remote Sensing. https://doi.org/10.3390/RS12010158

Tariq, A., Yan, J., Gagnon, A. S., Riaz Khan, M., & Mumtaz, F. (2022). Mapping of cropland, cropping patterns and crop types by combining optical remote sensing images with decision tree classifier and random forest. Geo-Spatial Information Science. https://doi.org/10.1080/10095020.2022.2100287

Tran, K. H., Zhang, H. K., McMaine, J. T., Zhang, X., & Luo, D. (2022). 10 m crop type mapping using Sentinel-2 reflectance and 30 m cropland data layer product. International Journal of Applied Earth Observation and Geoinformation. https://doi.org/10.1016/j.jag.2022.102692

Wei, P., Ye, H., Qiao, S., Liu, R., Nie, C., Zhang, B., Song, L., & Huang, S. (2023). Early Crop Mapping Based on Sentinel-2 Time-Series Data and the Random Forest Algorithm. Remote Sensing, 15(3212), 1–18. https://doi.org/https://doi.org/10.3390/rs15133212

Xie, G., & Niculescu, S. (2022). Mapping Crop Types Using Sentinel-2 Data Machine Learning and Monitoring Crop Phenology with Sentinel-1 Backscatter Time Series in Pays de Brest, Brittany, France. Remote Sensing. https://doi.org/10.3390/rs14184437

Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing. https://doi.org/10.1080/01431160600589179

Zhi, F., Dong, Z., Guga, S., Bao, Y., Han, A., Zhang, J., & Bao, Y. (2022). Rapid and Automated Mapping of Crop Type in Jilin Province Using Historical Crop Labels and the Google Earth Engine. Remote Sensing. https://doi.org/10.3390/rs14164028

Published
2023-10-31