Stability Analysis of Several Glycine Conformations Using a Molecular Quantum Mechanics Computational Approach
Abstract
This study aims to analyze the stability of various glycine conformations using a quantum computational approach based on molecular mechanics. The methodology involves geometry optimization performed on computational servers, where each conformation is analyzed to obtain the Final Single Point Energy, Loewdin charges, dipole moments, and the energy gap between the Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO). Optimization results reveal stability differences among glycine conformations based on single-point energy values, with Loewdin charge values indicating varied electron distribution across each conformation. The most optimal energy obtained was -284.080 Hartree for the conformation in which the amino group aligns with the carbonyl group. Dipole moment analysis provides insights into conformation polarity, where differences in glycine conformations significantly impact the overall dipole moment. The conformation with the highest polarity features the amino group adjacent to the hydroxyl group, with a dipole moment of 5.58246 Debye. Additionally, the HOMO-LUMO energy gap for each conformation correlates with glycine’s stability and chemical reactivity. This study offers insights into factors influencing glycine stability, such as steric and electronic effects, and aims to support further research on glycine development.
References
Bernreuther, W., & Suzuki, M. (1991). The electric dipole moment of the electron. Reviews of Modern Physics, 63(2), 313.
Bushuev, Y. G., Davletbaeva, S. V., & Koifman, O. I. (2017). Molecular dynamics simulations of aqueous glycine solutions. CrystEngComm, 19(47), 7197-7206. Doi: 10.1039/C7CE01271C
Cavallo, L., Correa, A., Costabile, C., & Jacobsen, H. (2005). Steric and electronic effects in the bonding of N-heterocyclic ligands to transition metals. Journal of organometallic chemistry, 690(24-25), 5407-5413. https://doi.org/10.1016/j.jorganchem.2005.07.012
Creighton, T. E. (1983). An empirical approach to protein conformation stability and flexibility. Biopolymers: Original Research on Biomolecules, 22(1), 49-58. https://doi.org/10.1002/bip.360220110
Fakheri, H., Tayyari, S. F., Heravi, M. M., & Morsali, A. (2017). Low frequency vibrational spectra and the nature of metal-oxygen bond of alkaline earth metal acetylacetonates. Journal of Molecular Structure, 1150, 340-348. https://doi.org/10.1016/j.molstruc.2017.08.041
Fraser, R. T. M. (1965). Steric and Electronic Effects in Electron Transfer Reactions. Nature, 205(4977), 1207-1207. https://doi.org/10.1038/2051207a0
Gundersen, R. Y., Vaagenes, P., Breivik, T., Fonnum, F., & Opstad, P. K. (2005). Glycine–an important neurotransmitter and cytoprotective agent. Acta Anaesthesiologica Scandinavica, 49(8), 1108-1116. https://doi.org/10.1111/j.1399-6576.2005.00786.x.
Halgren, T. A. (1996). Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94. Journal of computational chemistry, 17(5‐6), 553-586. https://doi.org/10.1002/(SICI)1096-987X(199604)17:5/6<553::AID-JCC3>3.0.CO;2-T
Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. Journal of cheminformatics, 4, 1-17.
Hinderaker, M. P., & Raines, R. T. (2003). An electronic effect on protein structure. Protein Science, 12(6), 1188-1194. https://doi.org/10.1110/ps.0241903
Kar, T., Sannigrahi, A. B., & Mukherjee, D. C. (1987). Comparison of atomic charges, valencies and bond orders in some hydrogen-bonded complexes calculated from Mulliken and Löwdin SCF density matrices. Journal of Molecular Structure: THEOCHEM, 153(1-2), 93-101. https://doi.org/10.1016/0166-1280(87)85007-8
Ke, H. W., Rao, L. I., Xu, X. I. N., & Yan, Y. J. (2008). Theoretical study of glycine conformers. Journal of Theoretical and Computational Chemistry, 7(04), 889-909. https://doi.org/10.1142/S0219633608004192
Kuhn, L. P. (1952). The Hydrogen Bond. I. Intra-and Intermolecular Hydrogen Bonds in Alcohols1. Journal of the American Chemical Society, 74(10), 2492-2499.
Li, P., & Wu, G. (2018). Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino acids, 50, 29-38.
Mark, J. E., & Sutton, C. (1972). Dipole moments and conformational energies of the chloroethanes. Journal of the American Chemical Society, 94(4), 1083-1090.
Orio, M., Pantazis, D. A., & Neese, F. (2009). Density functional theory. Photosynthesis research, 102, 443-453. https://doi.org/10.1007/s11120-009-9404-8
Pinter, B., Fievez, T., Bickelhaupt, F. M., Geerlings, P., & De Proft, F. (2012). On the origin of the steric effect. Physical Chemistry Chemical Physics, 14(28), 9846-9854. Doi: 10.1039/C2CP41090G
Reveles, J. U., & Köster, A. M. (2004). Geometry optimization in density functional methods. Journal of computational chemistry, 25(9), 1109-1116. https://doi.org/10.1002/jcc.20034
Rigby, J., & Izgorodina, E. I. (2013). Assessment of atomic partial charge schemes for polarisation and charge transfer effects in ionic liquids. Physical Chemistry Chemical Physics, 15(5), 1632-1646. Doi: 10.1039/C2CP42934A
Rüchardt, C., & Beckhaus, H. D. (2005). Steric and electronic substituent effects on the carbon-carbon bond. In Synthetic Organic Chemistry (pp. 1-22). Berlin, Heidelberg: Springer Berlin Heidelberg. https://doi.org/10.1007/3-540-15810-3_1
Ruiz-Morales, Y. (2002). HOMO− LUMO gap as an index of molecular size and structure for polycyclic aromatic hydrocarbons (PAHs) and asphaltenes: A theoretical study. I. The Journal of Physical Chemistry A, 106(46), 11283-11308. https://doi.org/10.1103/RevModPhys.63.313.
Shahab, S., Sheikhi, M., Filippovich, L., Khaleghian, M., Dikusar, E., Yahyaei, H., & Borzehandani, M. Y. (2018). Spectroscopic studies (geometry optimization, E→ Z isomerization, UV/Vis, excited states, FT-IR, HOMO-LUMO, FMO, MEP, NBO, Polarization) and anisotropy of thermal and electrical conductivity of new azomethine dyes in stretched polymer matrix. Silicon, 10, 2361-2385.
Sidgwick, N. V. (1936). Dipole Moment and Molecular Structure. Chemical Reviews, 19(3), 183-194.
Stroscio, G., & Goldman, N. (2024). Univariate Prediction of Hammett Parameters and Select Relative Reaction Rates Using Loewdin Atomic Charges.
Tirado-Rives, J., & Jorgensen, W. L. (2008). Performance of B3LYP density functional methods for a large set of organic molecules. Journal of chemical theory and computation, 4(2), 297-306. https://pubs.acs.org/doi/full/10.1021/ct700248k