Overview Fitoremediasi Dalam Pengelolaan Tanah Tercemar Kadmium (Cd)

  • RIZKI KHOIRIAH NASUTION Universitas Pembangunan Nasional Veteran Yogyakarta
Keywords: Phytoremediation, Soil, Cadmium

Abstract

Economic development and anthropogenic activities, such as industry and agriculture, lead to deepening soil pollution by heavy metals. Heavy metal pollution threatens human health through the food chain, air and direct contact. Agricultural soils are often polluted by mining waste residues, pesticides, and sewage disposal, which require immediate attention. Heavy metals such as cadmium (Cd), which cannot be biodegraded, have high toxic potential and adversely affect plant health, growth and food production. Conventional remediation methods, such as physical and chemical, face challenges such as high costs and the risk of secondary pollution. As an alternative, phytoremediation offers an environmentally friendly and low-cost solution by using plants to accumulate and remove heavy metals. This method is effective in reducing Cd pollution in soil. The purpose of the literature review is to compare plants that have effectiveness in cadmium absorption in soil. Based on the review of previous studies, it shows that plants such as Impatiens balsamina L (96%) and Red Cockscomb Celosia plumosa (Voss) Burv (85%) are highly efficient in Cd sorption and suitable for phytoremediation applications. This phytoremediation technology offers an easy and effective way to deal with heavy metal pollution in soil.

References

Abedi, T., Mojiri, A., 2020. Cadmium uptake by wheat (Triticum aestivum L.): an overview. Plants 9 (4), 500.

Borges, K.L.R., Hippler, F.W.R., Carvalho, M.E.A., Nalin, R.S., Matias, F.I., Azevedo, R.A., 2019. Nutritional status and root morphology of tomato under Cd-induced stress: comparing contrasting genotypes for metal-tolerance. Sci. Hortic. 246, 518–527.

Cheng, M.M., Wang, A., Tang, C.X., 2017. Ammonium-based fertilizers enhance Cd accumulation in carpobrotus rossii grown in two soils differing in pH. Chemosphere 188, 689–696

Etim, E.E., 2012. Phytoremediation and its mechanisms: a review. Int. J. Environ. Bioenergy 2, 120–136.

Haider, F.U., Liqun, C., Coulter, J.A., Cheema, S.A., Wu, J., Zhang, R., Farooq, M., 2021. Cadmium toxicity in plants: impacts and remediation strategies. Ecotoxicol. Environ. Saf. 211, 111887.

Hu, Y., Cheng, H., Tao, S., 2016. The challenges and solutions for cadmiumcontaminated rice in china: a critical review. Environ. Int. 92-93, 515–532

Hussain, A., Ali, S., Rizwan, M., ur Rehman, M.Z., Qayyum, M.F., Wang, H., Rinklebe, J., 2019. Responses of wheat (Triticum aestivum) plants grown in a Cd contaminated soil to the application of iron oxide nanoparticles. Ecotoxicol. Environ. Saf. 173, 156–164

Jalil, S., Nazir, M.M., Al-Huqail, A.A., Ali, B., Al-Qthanin, R.N., Asad, M.A.U., Eweda, M. A., Zulfiqar, F., Onursal, N., Masood, H.A., Yong, J.W.H., Jin, X., 2023. Silicon nanoparticles alleviate cadmium toxicity in rice by modulating the nutritional profile and triggering stress-responsive genetic mechanisms. Ecotoxicol. Environ. Saf. 268, 115699

Khan, Z.S., Rizwan, M., Hafeez, M., Ali, S., Adrees, M., Qayyum, M.F., Sarwar, M.A., 2020. Effects of silicon nanoparticles on growth and physiology of wheat in cadmium contaminated soil under different soil moisture levels. Environ. Sci. Pollut. Res. 27 (5), 4958–4968

Liu, L., Zhang, Q., Hu, L., Tang, J., Xu, L., Yang, X., Yong, J.W.H., Chen, X., 2012. Legumes can increase cadmium contamination in neighboring crops. Plos One 7, e42944.

Marques, AP, Rangel, AO, Castro, PM, 2009. Remediasi logam berat tanah yang terkontaminasi: fitoremediasi sebagai teknologi pembersihan yang berpotensi menjanjikan. Kritik. Pdt. Lingkungan. Sains.

Palansooriya, K.N., Shaheen, S.M., Chen, S.S., Tsang, D.C., Hashimoto, Y., Hou, D., Ok, Y. S., 2020. Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. Environ. Int. 134, 105046.

Qin, G.W., Niu, Z.D., Yu, J.D., Li, Z.H., Ma, J.Y., Xiang, P., 2021. Soil heavy metal pollution and food safety in China: Effects, sources and removing technology. Chemosphere 267, 129205

Ranskin, dkk. 1997. Phytoremediation of Metals: Using Plants to Remove Pollutans from the Environment Current Opinion in Biotechnology. Skotlandia: University of Aberdeen.

Sani, M.N.H., Amin, M., Siddique, A.B., Nasif, S.O., Ghaley, B.B., Ge, L., Wang, F., Yong, J.W.H., 2023. Waste-derived nanobiochar: a new avenue towards sustainable agriculture, environment, and circular bioeconomy. Sci. Total Environ. 905, 166881

Shaghaleh, H., Azhar, M., Zia-ur-Rehman, M., Hamoud, Y.A., Hamad, A.A.A., Usman, M., Rizwan, M., Yong, J.W.H., Alharby, H.F., Al-Ghamdi, A.J., Alharbi, B.M., 2024. Effects of agro based organic amendments on growth and cadmium uptake in wheat and rice crops irrigated with raw city effluents: Three years field study. Environ. Pollut. 344, 123365

Shanying, H., Xiaoe, Y., Zhenli, H., Baligar, V.C., 2017. Morphological and physiological responses of plants to cadmium toxicity: a review. Pedosphere 27 (3), 421–438.

Shi, T., Wang, Y., 2021. Heavy metals in indoor dust: spatial distribution, influencing factors, and potential health risks. Sci. Total Environ. 755, 142367

Shuttleworth. 2009. What is a Literature Review? Retrieved from http:explorable.com/what-is-a-literature-review.

Tang, Y., Xie, Y., Sun, G., Tan, H., Lin, L., Li, H., Liang, D., 2018. Cadmium-accumulator straw application alleviates cadmium stress of lettuce (Lactuca sativa) by promoting photosynthetic activity and antioxidative enzyme activities. Environ. Sci. Pollut. Res. 25 (30), 30671–30679.

Tiwari, R.K., Lal, M.K., Naga, K.C., Kumar, R., Chourasia, K.N., Subhash, S., Sharma, S., 2020. Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops. Sci. Hortic. 272, 109592.

Thind, S., Hussain, I., Ali, S., Hussain, S., Rasheed, R., Ali, B., Hussain, H.A., 2020. Physiological and biochemical bases of foliar silicon-induced alleviation of cadmium toxicity in wheat. J. Soil Sci. Plant Nutr. 20 (4), 2714–2730.

Tow, T.S.W., Eng, Z.X., Wong, S.P., Ge, L., Tan, S.N., Yong, J.W.H., 2019. Axonopus compressus (Sw.) Beauv.: A potential biomonitor for molybdenum in soil pollution. Int. J. Phytoremed. 20, 1363–1368.
van der Ent, A., Baker, A.J., Reeves, R.D., Pollard, A.J., Schat, H., 2013. Hyperaccumulators of metal and metalloid trace elements: facts and fiction. Plant Soil 362, 319–334.
Wang, Q., Garrity, G.M., Tiedje, J.M., Cole, J.R., 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73 (16), 5261–5267.

Wu, S., Wang, Y., Zhang, J., Gong, X., Zhang, Z., Sun, J., Wang, Y., 2021. Exogenous melatonin improves physiological characteristics and promotes growth of strawberry seedlings under cadmium stress. Horticult. Plant J. 7 (1), 13–22.

Yang, C., Qiu, W.W., Chen, Z.X., Chen, W.Y., Li, Y.F., Zhu, J.L., Rahman, S.U., Han, Z.X., Jiang, Y., Yanf, G.J., Tian, J., Ma, Q., Zhang, Y., 2020. Phosphorus influence Cd phytoextraction in Populus stems via modulating xylem development, cell wall Cd storage and antioxidant defense. Chemosphere 242, 125154. H

Yong, J.W.H., Tan, S.N., Ng, Y.F., Low, K.K.K., Peh, S.F., Chua, J.C., Lim, A.A.B., 2010. Arsenic hyperaccumulation by Pteris vittata and Pityrogramma calomelanos: A comparative study of uptake efficiency in arsenic treated soils and waters. Water Sci. Technol. 61, 3041–3049

Zine, H., Midhat, L., Hakkou, R., Adnani, M.E., Ouhammou, A., 2020. Guidelines for a phytomanagement plan by the phytostabilization of mining wastes. Sci. Afr. 10, e00654
Published
2024-08-30