Metode Fitoremediasi dalam Pengelolaan Air Tercemar Tembaga (Cu) Berdasarkan Literatur Review

  • RIZKI KHOIRIAH NASUTION Universitas Pembangunan Nasional Veteran Yogyakarta
Keywords: Phytoremediation, Aquatic Plants, Copper

Abstract

Increased industrialization and urbanization lead to heavy metal pollution of waters, causing serious environmental impacts. Existing microbial technologies to address this problem are often expensive and not always environmentally friendly. Phytoremediation, using plants to remove heavy metals, offers a cheaper and environmentally friendly solution. These methods include phytoextraction, phytostabilization, phytovolatilization, phytofiltration, and phytodegradation. Phytoremediation technology can be applied in-situ or ex-situ, with in-situ methods being more economical. The plants compared in the literature review are Ipomoae aquatica Forks, Salvinia molesta, Pistia stratiotes, Eichhornia crassipes and Sagittaria lancifolia. Based on previous studies, research shows plants such as water hyacinth (Eichhornia crassipes) and spear leaves (Sagittaria lancifolia) are effective in absorbing copper (Cu) from polluted water, making them optimal choices for phytoremediation. This technology provides an efficient and low-cost solution to address heavy metal pollution.

References

Aurangzeb, N., Nisa, S., Bibi, Y., Javed, F., & Hussain, F. (2014). Phytoremediation potential of aquatic herbs from steel foundry effluent. Brazilian Journal of Chemical Engineering, 31(4), 881–886.
Azubuike, C., Chikere, C., & Okpokwasili, G. (2016). Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World Journal Of Microbiology And Biotechnology, 32(11).
Bolan, N., Kunhikrishnan, A., Thangarajan, R., Kumpiene, J., Park, J., & Makino, T. (2014). Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize. Journal Of Hazardous Materials, 266, 141-166.
Dickinson, N. (2017). Phytoremediation. Encyclopedia of Applied Plant Sciences, 2, 327–331.
Doong, R., Lee, S., Lee, C., Sun, Y., & Wu, S. (2008). Characterization and composition of heavy metals and persistent organic pollutants in water and estuarine sediments from Gao-ping River, Taiwan. Marine Pollution Bulletin, 57(6-12), 846-857
Khalid, S., Shahid, M., Niazi, N., Murtaza, B., Bibi, I., & Dumat, C. (2017). A comparison of technologies for remediation of heavy metal contaminated soils. Journal Of Geochemical Exploration, 182, 247-268.
Maderova, L., Watson, M., & Paton, G. (2011). Bioavailability and toxicity of copper in soils: Integrating chemical approaches with responses of microbial biosensors. Soil Biology And Biochemistry, 43(6), 1162-1168.
Marques, AP, Rangel, AO, Castro, PM, 2009. Remediasi logam berat tanah yang terkontaminasi: fitoremediasi sebagai teknologi pembersihan yang berpotensi menjanjikan. Kritik. Pdt. Lingkungan. Sains.
Ranskin, dkk. 1997. Phytoremediation of Metals: Using Plants to Remove Pollutans from the Environment Current Opinion in Biotechnology. Skotlandia: University of Aberdeen.
Rezania, S., Taib, S. M., Md Din, M. F., Dahalan, F. A., & Kamyab, H. (2016). Comprehensive review on phytotechnology: Heavy metals removal by diverse aquatic plants species from wastewater. Journal of Hazardous Materials, 318, 587-599.
Sharma, P., & Pandey, S. (2014). Status of Phytoremediation in World Scenario. International Journal of Environmental Bioremediation & Biodegradation, 2(4), 178–191.
Shuttleworth. 2009. What is a Literature Review? Retrieved from http:explorable.com/what-is-a-literature-review.
Siddiquee, S., Rovina, K., & Azad, S. (2015). Heavy Metal Contaminants Removal from Wastewater Using the Potential Filamentous Fungi Biomass: A Review. Journal of Microbial & Biochemical Technology, 07(06)
Singh, A., & Prasad, S. (2014). Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. International Journal Of Environmental Science And Technology, 12(1), 353-366
Published
2024-08-30